World Institutes for
Disaster - Risk - Management
D R M

STRATEGY - TACTICS - EXAMPLE
Executive Summary

Setting priorities in the worldwide disaster risk management is one of the main goals of the strategy, to be put into concrete terms by the study in hand.

The successful translation into action supposes satisfaction of all three requirements, the economical, ecological and social. Disregarding only one of them, may jeopardize a whole project. Such perception is the guideline for the recommended strategy.

Challenge as well as difficulty of a consistent DRM project portfolio are a rigorously aim-focussed networking of all the many aspects from most sophisticated risk assessment technics cross up to financial risk management in both, industrialized and developing countries, as shown by the proposed methodology.

Due to the complex (highly non-linear) systems there is no alternative to the recommended top down approach for representative statements, as the only sound bases for an optimized decision making. The reductionistic bottom up approach leads into crucial contradictions, often hampering the succes of a project.

Segmented and discipline-oriented, hence, reductionistic research and know how is vastly developed. In contrary, for holistic (e.g. inter-, trans-disciplinary) risk management, only little literature and know how is available, especially for quantified statements, which are indispensable to set priorities in order to realize projects. The development of such instruments could become a fundamental merit of DRM.

The study in hand sketches a methodology
- starting with a networked view of the world
- subdividing the world so far only, in order to apply available experiences and rules for quantification,
- thereby providing representative results, assumed for a reliable risk management
- putting computerized tools, as flow charts, checklists and simulation models at disposal, practical minded for a most efficient, case-specific realization
- optimizing the powerful options, offered by computer technology, to handle the enormus amount of data and most complicated networking sucessfully and traceable for laymen too
- generating a decision tool, showing the return on investment for the mitigation of disasters
- coming up with a rating of the scenarios in discussion, providing their ranking as basis for setting priorities.

The next step must put the outlined ideas into concrete forms, as part of a three year plan.
A first draft of proposals, as to be proceeded from the year 2000 to 2002, has been shown and started to be discussed already.
STRATEGY of DRM

The objective of DRM is to enable people to anticipate disasters in order to take action to protect life and property. The goal is to ensure a sustainable development, which implies the impacts to become triple-supportable, namely economically, ecologically and socially. The following guidelines are the consequence.

Economic compliance assumes efficiency. It supposes a procedure which is both, necessary and sufficient. Therefore, the top down (holistic) approach with minimum discretization is required, whereas any bottom up (reductionistic) approach is excluded, as explained in chap. 3.4. Most decisive for the cost is primarily the presumed accuracy, besides the accepted residual risk. Continuous focussing on the accuracywise weakest aspects is a consequence for the optimization of cost.

Ecologically, main-indicators are the degree of i) self-organization (autopoiesis), ii) dynamics and iii) diversity of the system, impacted by the disaster. If one of these indicators is substantially hampered by the impact, caused by the disaster, such impact is not supportable by the natural environment.

Social acceptance assumes adequate safety, rule of law, fairness, welfare and understanding, as expressed by the social balance.

Consequently, the strategy of DRM focusses primarily on

- **sustainability**, i.e. triple supportability of the impacts, caused by disasters:
 - i) economically, ii) ecologically, iii) socially
- **efficiency**, requiring indispensably a **top down approach** with minimum discretization;
- **optimization** of cost and values for a required accuracy of the proof of sustainability;
- **conservation** of the natural capacities concerning self-organization, dynamics, diversity;
- **achievement** of social acceptance, reached by a reasonable social balance.

TACTICS for DRM - Methodology and tools

The methodology to achieve all strategic goals consists in the relevant optimization of the cybernetic flow, which is the flow of matter, energy and information. Information related risks are financial risks and risks concerning liability, rules of profession, due diligence, know how, besides many others. Hazard is understood as a state outside of the tolerated range, which provides sustainability, i.e. economical, ecological and social supportability. Management means the optimization of the measure in order to bring the state of the system within such tolerated range.

The proposed management tool ECO KIT is a control circle (Regelkreis) for an iterative optimization of the measure, as described before. Checklists are provided for the minimum discretization of i) the cause of a disaster, ii) the impacted natural environment and iii) the impacted interests. The three case-specified checklists form the axis of the cube of matrices, comprising the case-specific hazards, risks, measures and costs.

The presented ROI/RIO-compass shows the future development of the return on investment (ROI) for the scenarios under consideration, depending on their sustainability (RIO), due to the agenda 21 of the conference at Rio 1992.

The priorities of measures, as required by DRM, renders the rating of the discounted scenarios, if ranked according to the best performance of risk diminution compared to the investment.

EXAMPLE - Management of risk by a hurricane

The above mentioned methodology and tools are explained in principle by the example of the management of risk by the caribbean hurricane ANDREW, which occurred on August 1992.
Table of content

TACTICS - Methodology and tools

1 DISASTER
 1.1 Natural and man-made disasters (A)
 1.2 The cybernetic flows (\(F_A, F_{DUE}, F_{TOL} \))
 1.3 The quantification of a hazard (G\(A \))
 1.4 The endangered system
 1.5 Worldmap of DISASTERS
 1.6 Worldmap of LOSSES
 1.6.1 Worldmap of CYBERNETIC LOSSES
 1.6.2 Worldmap of MONETARIZED LOSSES
 1.7 Worldmap of PRIORITIES for hazard relieves

2 RISK
 2.1 The concept of risk
 2.2 The quantification of risk (R\(A \))
 2.3 The tolerated risk (R\(TOL \))

3 MANAGEMENT
 3.1 Necessity to act
 3.2 "ECO KIT" - the management tool
 3.3 The measure (\(\Delta A \)) - the management's result
 3.4 The "top down" - approach
 3.5 Discretization of the system
 3.5.1 Discretization of time: momentary states, scenarios
 3.5.2 Discretization of space and of its content
 3.6 ROI / RIO - Compass
 3.7 Triple-Rating
 3.8 Priorities

Annexes

EXAMPLE - Management of risk by a hurricane
1 DISASTER

1.1 Natural and man-made disasters (A)

A disaster can be of either natural or man-made (artificial, technical) origin.

<table>
<thead>
<tr>
<th>DISASTER</th>
<th>space (spheres)</th>
<th>content // emission of matter & energy</th>
<th>information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>Air</td>
<td>- Radiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ozone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Climate (CO₂)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hurricane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lightningstroke</td>
<td></td>
</tr>
<tr>
<td>Hydrosphere</td>
<td>Water</td>
<td>- Hail</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Snow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Avalanches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Floods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Waves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Droughts</td>
<td></td>
</tr>
<tr>
<td>Lithosphere</td>
<td>Soil</td>
<td>- Vulcanism</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Earthquakes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Debrisflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Landslides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Settlement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sinking</td>
<td></td>
</tr>
<tr>
<td>Biosphere</td>
<td>Organisms</td>
<td>ANIMALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Locust</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLANTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Forestdying</td>
<td></td>
</tr>
<tr>
<td>Man-made</td>
<td>Anthroposphere</td>
<td>MATTER</td>
<td></td>
</tr>
<tr>
<td>(technical,</td>
<td></td>
<td>- Gas</td>
<td></td>
</tr>
<tr>
<td>artificial)</td>
<td></td>
<td>- Liquid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Solid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENERGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Heat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vibrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Electromagn. waves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artificial</td>
<td>ECONOMICS</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td>- financial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- liability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NATURAL SCIENCES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Gen-Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nuklear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HUMANITIES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- dispute</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- health</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- social</td>
<td></td>
</tr>
</tbody>
</table>

Generalized, "disaster" means a disastrous cybernetic flow (F), which is the flow of matter (m), energy (e) and/or information (i), thus \(F = F_{m,e,i} \).

\(F_{m,e,i} \) is considered as disastrous, if it
- exceeds its tolerated maximum value (\(F_{TOL\ max} \)) or
- falls short of its tolerated minimum value (\(F_{TOL\ min} \)).

The tolerated range of the impacted, cybernetic flow is determined by the vulnerabilities of the impacted interests against the impacted flow.
1.2 The cybernetic flows (\(F_A, F_{DUE}, F_{TOL}\))

As mentioned, the cybernetic flow (\(F\)) is the flow of matter (\(m\)), energy (\(e\)) and information (\(i\)), thus \(F = F_{m,e,i}\).

\(F_A\) is a **momentary** cybernetic flow (\(F_{A_{m,e,i}}\)), as the re-action, caused by the disaster (\(A\)). \(A\) is the cause of the disaster. Generally speaking, it represents the disturbing term, which is the action, impacting the non-impacted flow (\(F_{without A}\)). \(F_A\) depends on space (\(x\)) and time (\(t\)), hence : \(F_A = F_{m,e,i}(x,t)\). \(F_A\) is forecasted by experience or modelling, as numerical simulation. The locus, where \(F_A(x,t) = 0\), becomes the envelopment of the space of impact and determines the case specific environment (\(U_A\)), within which the momentary cybernetic flow (\(F_A\)), as the content of \(U_A\), must be determined and will be compared with its tolerated value (\(F_{TOL}\)).

\(F_{DUE}/I\) is the **optimal** cybernetic flow for the interest (\(I\)). For various impacted interests, \(F_{DUE}\) usually differs and may even diverge.

\(F_{TOL_{max}}/I\) The same holds for the extremal **tolerated** cybernetic flows (\(F_{TOL_{max}}/I\), \(F_{TOL_{min}}/I\)). They are determined by the vulnerability of the impacted interest (\(I\)) against \(F_A\).

1.3 The quantification of a hazard (\(G_A\))

The hazard (\(G_A\)) is the danger, caused by the disaster (\(A\)) and can be quantified as

\[
G_A = \frac{(F_A - F_{DUE})}{(F_{TOL} - F_{DUE})}
\]

\(G_A\) = hazard by \(A\)

\(A\) = cause of disaster

\(F_A\) = cybernetic flow by \(A\)

\(F_{DUE}\) = optimal cybernetic flow

\(F_{TOL}\) = extremal tolerated flow

\[
G_A = \begin{cases}
G_A & \text{if } G_A < 0 \implies G_A = 0 \\
G_A > 1 & \text{if } F_{TOL} = F_{DUE} \implies G_A > 1
\end{cases}
\]

\(F_{m,e,i}\)

\(G > 1\)

\(G < 1\)

\(G = 0\)

\(G = 1\)

Fig. 1 The cybernetic flows (\(F\)) with the range of tolerance **in function of time**

EXAMPLES

<table>
<thead>
<tr>
<th>Disaster ((A))</th>
<th>Cybernetic Flow ((F))</th>
<th>(F_A)</th>
<th>(F_{DUE})</th>
<th>(F_{TOL_{max}})</th>
<th>(F_{TOL_{min}})</th>
<th>(G_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drought</td>
<td>level of groundwater</td>
<td>-10</td>
<td>+2</td>
<td>-</td>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>accident</td>
<td>number of deaths</td>
<td>217</td>
<td>0</td>
<td>100</td>
<td>-</td>
<td>2.17</td>
</tr>
<tr>
<td>loss of work</td>
<td>number of lost work-places</td>
<td>100</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>
1.4 The endangered system

As the cybernetic flow is the content of the world, it must be the content of the system too.

The flow of matter, energy and information \((F_{m,e,i})\) without the disaster \((A)\) is the original flow of the system. Influenced by the source of the disaster as the action \((A)\), \(F\) becomes the content \((F_A)\) of the endangered system, equal to the re-action \((B_A)\). \(U_A\) is the space of the endangered system, as the environment relevant for \(A\).

Since \(F\), \(A\) and \(I\) are dependent on time, also \(B\) and \(U_A\), thus, the endangered system is a function of time. Any change of any part of the system leads to a new scenario of the system.
1.5 Worldmap of DISASTERS

1.6 Worldmap of LOSSES
1.6.1 Worldmap of CYBERNETIC LOSSES

1.6.2 Worldmap of MONETARIZED LOSSES

1.7 Worldmap of PRIORITIES for hazard relieves
2 RISK

2.1 The concept of risk

The concept of risk applies to the comparison of a certain hazard with an other hazard of the same intensity and potential of loss respectively. According to this concept, a hazard is considered the less disastrous, the less probable of it occurring, because of time-specifically lower loss.

2.2 The quantification of risk (R_A)

Commonly, the risk (R_A) is defined as the product of the hazard (G_A, due to the disaster A) and the probability of the hazard's occurrence (X_G). For the risk (R_A), created by the disaster (A), holds

$$0 \leq R_A = G_A \cdot X_G = \frac{(F_A - F_{DUE})}{(F_{TOL} - F_{DUE})} \cdot (X_A \cdot X_I \cdot X_O) \leq G_A$$ \hspace{1cm} (2)

The cybernetic flows (F) are quantified according to Sect. 1.2.

X_A is the probability of occurrence of the disaster (A), determined from experience or statistically.

X_I is the probability of existence of the interest (I), see fig. 2, also determined from experience or statistically.

X_O is the probability of the space- and timewise overlapping of the neighbouring interest with the impact by the disaster.

X_O must be determined case-specifically.

X_G is the product of the three probabilities above.

Because $0 \leq X_O \leq 1$, the risk is reduced against the hazard, according to its probability. Due to the multiplication, this reduction is linear. With the dimensionless hazard (G), see eq.1, the dimension of the risk (R) corresponds to the dimension of X_G.

2.3 The tolerated risk (R_{TOL})

The tolerated risk (R_{TOL})

• is equal to the accepted residual risk,
• is the gauge, on which the management must be focussed on,
• is deciding the measure and the cost,
• is the parameter, which triggers everything.

Nevertheless, the society and the individuals are rather interested in the hazard, than in its probability of occurrence and in the resulting risk. Probability and risk are of interest from e.g. economical point of view, whereas an individual, hit by a disaster, does not concern himself about its probability. Therefore and in general, the society or individuals prefer to decide about the tolerated hazard and the tolerated flow (F_{TOL}) respectively, than about the tolerated risk (R_{TOL}).

Inspite of such preference by the society, the concept of risk is promoted from economical points of view, although or because a tolerated risk is a weaker condition than a tolerated flow. It is weaker, because a non-tolerated flow can, still complying with the tolerated risk, be compensated by a low probability, see eq.2. However, due to these different attitudes, a project may be economically favourable - because of a low risk, i.e. with a timespecifically low loss, due to a low probability, inspite of a high hazard - yet, can be jeopardized or hampered by the public opinion, arguing exclusively with the high hazard. Consequently, the project is socially un-favourable.

The determination of whatever tolerance is finally a political decision, to be taken by the individuals and society of concern. Already the decision about a tolerated hazard and even more the decision about a tolerated risk may differ and even diverge considerably between various individuals, depending on their awareness of hazard or willingness to take risk.

In case, no tolerated risk is given, but a tolerated flow (F_{TOL}) and, as a consequence, a tolerated hazard (G_{TOL}) with $F_A = F_{TOL}$ in eq.2, the tolerated risk (R_{TOL}) becomes trivial, because of the standardization of the hazard G on the tolerated flow, see eq. 1, which leads to $G_{TOL} = 1$:

$$0 \leq R_{TOL} = G_{TOL} \cdot X_G = \frac{(F_A - F_{DUE})}{(F_{TOL} - F_{DUE})} \cdot (X_A \cdot X_I \cdot X_O) \leq G_{TOL}$$

$$0 \leq R_{TOL} = X_G = (X_A \cdot X_I \cdot X_O) \leq 1$$ \hspace{1cm} (3)
3 MANAGEMENT

The goal of DRM (Disaster Risk Management) is to reduce the risk in order to reach a sustainable development, which implies economical, ecological and social acceptance of the impacted flow of matter, energy and information (F_A).

3.1 Necessity to act

Necessity to act is given, from point of view of
- hazard, if the present state of cybernetic flow (F_A) lies outside of the tolerated range, see fig. 1, i.e.
 - above or below of F_{TOL}, formally expressed as
 $$ F_{TOL,max} < F_A < F_{TOL,min} $$
 which means equally if $G_A > 1$ (since G is standardized on the tolerated flow), and, thus, $0 \leq G_A \leq 1$ indicates a tolerated hazard.
- risk, if $R_A > X_G$, according to eq. 3.

3.2 "ECO KIT" - the management tool

ECO-KIT is the general procedure in order to optimize the measure (ΔA) for mastering the risk (R_A), caused by the disaster (A).

The measure (ΔA), optimized by disaster risk management, must be determined iteratively, because there is no analytical formulation available for the highly non-linear system. The regulation circle ECO-KIT is the management tool for Disaster Risk Management (DRM), with
- the risk (R) triggered regulation criteria, $R_A < X_G$, according to eq. 3.
- the accuracy (ε) triggered regulation criteria, $\varepsilon < \varepsilon_{TOL}$.

The accuracy (ε) is often disregarded, although it is the most important aspect, because the required accuracy decides about time and cost. No other issue is of comparable importance.
3.3 The measure (ΔA) - the management’s result

As measures (ΔA), there are technical and non-technical measures conceivable.

There exists a vast variety of technical measures. Yet principally, they converge on the following three types:

I reduction of the action, of the source, of the emission
II reduction of the re-action, of the influence of the transmission
III reduction of the impact, of the immission

![Fig. 4 The three types of technical measures](image-url)

Non-technical measures are:
- reduction of sensitivity
- adjustment of regulation
- financial compensation

3.4 The "top down" - approach

For representative results and statements, there is no alternative to the "top down"-approach.

By a "bottom up" - approach i) the interactions, which are characterizing the system, are not considered and ii) the usually practised superposition of partial solutions is mathematically wrong for a non-linear system, thus, leads to non-representative results. Only the "top down"-approach, with its holistic (systemic, correlated, hence, non-reductionistic) view, takes the interactions into consideration, which is a presupposition for representative statements.

The difficulty, rising with the top down approach, is the fact, that for the holistic behavior of the system no analytical relationships can be formulated. Consequently, the system must be discretized until the reactions of all parts, resulting from the discretization of the system, can be described mathematically. The thereby lost interactions must be recovered by iteration over the boundary conditions of all parts. Otherwise the simulated behavior of the system is not representative and the base for the management, for the case specific decision making, is not sound.

Besides representative results, a further decisive advantage of the top down approach against the bottom up approach is the conclusivity of whatever (check-)list, as shown in annex 1, 2 and 4, resulting from the discretization.

3.5 Discretization of the system

3.5.1 Discretization of time: momentary states

Subsequent to the specification of the system, see fig. 2, the discretization of the development of the system is the next step to be done. The case-specific momentary states are the result. Each alternative of boundary conditions or system characteristics renders a scenario. For every momentary state of every scenario, the following discretization of space and its content is due.
3.5.2 Discretization of space and of its content: checklists

The discretization of the system, see fig. 2, with regard to its space and its content respectively, as required by sect. 3.4, means the discretization of each element of the regulation circle ECO-KIT, as described in sect. 3.2., and is shown below:

3.5.2.1 F_{UA} cybernetic flow within U_A \Rightarrow Checklist F (see annex 1) $=$ y-axis, abcisse of matrix of re-action F_A

3.5.2.2 A cause of disaster, action \Rightarrow Checklist A (see annex 2) $=$ x-axis, ordinate of matrix of re-action F_A

3.5.2.3 F_A flow by A, re-action (F_A) \Rightarrow Matrix of re-action (F_A) = basement of cube of matrices

3.5.2.4 I_A interests of neighbours of A \Rightarrow Checklist I (see annex 4) $=$ z-axis of cube of matrices

The set up of the cube of matrices, as a result of the discretization, with:
- Checklist F as the x-axis and Checklist A as the y-axis, together generating the
- Matrix of re-action (F_A), which is the basement of the cube of matrices, which - with
- Checklist I as its z-axis - is shown on principle in the following sketch.

![Cube of matrices opened up](image)

Fig. 5 Cube of matrices opened up

Cube of matrices for parameter λ

In order to achieve results, which are easy comprehensible in any respect, for each one of the following parameters λ(3.5.2.5 - 3.5.2.14) a cube of matrices must be built up for each scenario of each momentary state, efficiently feasible, if correspondingly organised computerwise.

<table>
<thead>
<tr>
<th>Parameter λ</th>
<th>Meaning</th>
<th>λ-Cube</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{DUE}</td>
<td>vulnerability of interest (I) against momentary flow (F_A)</td>
<td>F_{DUE} - cube = cube of matrices F_{DUE}</td>
</tr>
<tr>
<td>$F_{TOL\ max}$</td>
<td>max. flow - cube</td>
<td>$F_{TOL\ max}$ - cube = cube of matrices $F_{TOL\ max}$</td>
</tr>
<tr>
<td>$F_{TOL\ min}$</td>
<td>min. flow - cube</td>
<td>$F_{TOL\ min}$ - cube = cube of matrices $F_{TOL\ min}$</td>
</tr>
<tr>
<td>G_A</td>
<td>hazard by A</td>
<td>G_A - cube = cube of matrices G_A</td>
</tr>
<tr>
<td>X_0</td>
<td>probability of G_A</td>
<td>X_0 - cube = cube of matrices X_0</td>
</tr>
<tr>
<td>R_A</td>
<td>risk by A</td>
<td>R_A - cube = cube of matrices R_A</td>
</tr>
<tr>
<td>ΔA</td>
<td>measure</td>
<td>ΔA - cube = cube of matrices ΔA</td>
</tr>
<tr>
<td>$E_{\Delta A}$</td>
<td>cost of ΔA</td>
<td>$E_{\Delta A}$ - cube = cube of matrices $E_{\Delta A}$</td>
</tr>
<tr>
<td>V_{IA}</td>
<td>value of ΔA</td>
<td>V_{IA} - cube = cube of matrices V_{IA}</td>
</tr>
<tr>
<td>ROI_{IA}</td>
<td>return on investment by ΔA</td>
<td>ROI_{IA} - cube = cube of matrices ROI_{IA}</td>
</tr>
</tbody>
</table>

For convergence of the iterative procedure both is required:
- the determination of one decisive λ,i,j over all k,λ,i,j, which is accepted by all k-interests and
- the consistency of all simulated cybernetic flows F_A,i,j over the entire environment U_A.
3.6 ROI / RIO - Compass

The ROI/RIO - Compass shows the return on investment, ROI, as a function of time for each one of the considered scenarios. The various scenarios differ in complying with triple-supportability, which refers to economical, ecological and social vulnerability and creates a sustainable development. The parameter - characterizing the scenarios in their degree of complying with sustainability, as understood by agenda 21 of the conference in Rio 1992 - is, in short, RIO.

At least on the medium and long term, there does not exist an alternative to sustainability, which holds as well for the management for the satisfaction of any interest. Short term profits are seldom or never of longevity, as indicated in fig. 6.

![ROI / RIO - compass](image)

Fig. 6 ROI / RIO - compass

As such, the ROI/RIO - compass is a best suitable tool for decision makers of the private and the public sector. By means of the ROI/RIO - compass, they are in the position to tailor their commitment for sustainability - which is the only recommendable policy, since actually no alternative to sustainability does exist - as best fit to their needs and capabilities for investments.

Triple-budgeting, on which the ROI/RIO-compass is based on, is more and more realized as the best, because of triple-win procedure.

3.7 Triple-rating

Triple-rating means rating of economical, ecological and social performance, each described by an indicator. Such rating of the scenarios of the ROI/RIO - compass, describing the development of the return on investment, can be achieved by discounting each one of the scenarios under consideration.

Only a triple-rating, based on quantified, objective and traceable facts, will provide a sound ranking of strategies and management.

3.8 Priorities - as required by DRM

The above explained triple-rating of the scenarios, referring to their triple-return on investment, i.e. from economical, ecological and social point of view, decides about the rating of the projects, hence, about their ranking and the priorities to be set by DRM.
Checklist F - short version

1. MATTER (m)

1.1 **Biotic matter** (organisms)
 1.1.1 **Natural** biotic matter
 1.1.1.1 kernlose Einzeller (bacteria)
 1.1.1.2 kernhaltige Einzeller
 1.1.1.3 fungi
 1.1.1.4 plants
 1.1.1.5 animals
 1.1.2. **Artificial** biotic matter
 1.1.2.1 organisms, artificially generated (gen-technics)
 1.1.2.2 cultures
 1.2 **Abiotic** matter ("dead" matter)
 1.2.1 **gases**
 1.2.1.1 air
 1.2.1.2 natural gases
 1.2.1.3 artificial gases
 1.2.2 **liquids**
 1.2.2.1 water
 1.2.2.2 natural liquids
 1.2.2.3 artificial liquids;
 1.2.3 **solids**
 1.2.3.1 soil
 1.2.3.2 natural solids
 1.2.3.3 artificial solids

2. **ENERGY (e)**

2.1 **mechanical** energy
 2.1.1 potential
 2.1.2 kinetic

2.2 **caloric, thermic**

2.3 **electric**

2.4 **electromagnetic**
 2.4.1 radioactive
 2.4.2 solar
 2.4.3

2.5 **nuclear**

2.6 **chemical**
 2.6.1 fossil
 2.6.2 biologic
 2.6.3

3. **INFORMATION (i) - draft**

3.1 **scientific**
 3.1.1 mathematical
 3.1.2 physical
 3.1.3 chemical
 3.1.4 technical
 3.1.4.1 planning
 3.1.4.2 architectural
 3.1.4.3 constructional
 3.1.4.4 processing
 3.1.4.5 manufacturing
 3.1.4.6
 3.1.5 biological
 3.1.6 medical
 3.1.7 pharmaceutical
 3.1.8

3.2 **humanistic**
 3.2.1 sociological
 3.2.2 historical
 3.2.3 political
 3.2.4 juristical
 3.2.5 journalistic
 3.2.7 cultural
 3.2.8 military
 3.2.9 normative
 3.2.10 philosophical
 3.2.11 religious
 3.2.12 ethical
 3.2.13 economical
 3.2.14
 3.2.15
Checklist A
for the case-specific characterization of the
CAUSE, ACTION (A):

1. Boundary (envelopment) of cause, action (A), defined by:
 1.1. Position (coordinates)
 1.2. Form (geometry)
 1.3. Volume (requirement of space)

2. Emission (= normal flow of matter, energy and information, which usually are coupled)
 if emission: negative, A = SINK
 positive, A = SOURCE
 supply = product, disposal

2.1. Matter (m)
 2.1.1. biotic
 2.1.1.1. organic
 - seeds
 - food
 2.1.1.2. abiotic
 2.1.1.2.1. gaseous
 - fresh air
 - used air (small)
 2.1.1.2.2. liquid
 - drinking water
 - sewage
 2.1.1.2.3. solid
 - resources
 - garbage

2.2. Energy (e)
 2.2.1. gravitational
 2.2.2. thermal
 - hydrocarbons
 2.2.3. chemical
 2.2.4. waves
 2.2.4.1. vibration
 2.2.4.2. gravity waves
 2.2.4.3. sound waves
 2.2.4.4. electromagnetic
 - current
 - γ-, β-radiation
 2.2.4.5. radiation
 2.2.5. information
 - knowledge
 - knowledge (-transfer)

2.3.1. scientific
 2.3.1.1. "exact"
 2.3.1.1.1. mathematical
 2.3.1.1.2. physical
 2.3.1.1.3. chemical
 2.3.1.1.4.
 2.3.1.2. descriptive
 2.3.1.2.1. biological
 2.3.1.2.2. earth-scientific
 2.3.1.2.3.

2.3.1.3. applied
 2.3.1.3.1. technical
 2.3.1.3.2. medical
 2.3.1.3.3. economical
 - finances
 - production
 - marketing
 - R + D
 2.3.1.3.4. military
 2.3.1.3.5.

2.3.2. humanistic
 2.3.2.1. sociological
 2.3.2.2. historical
 2.3.2.3. political
 2.3.2.4. normative
 2.3.2.5.

2.3.3. media (information, entertainment, commercial)
 2.3.3.1. local, regional
 2.3.3.2. national
 2.3.3.4. continental, intercontinental

3. Content

3.1. Matter (m)
 3.1.1. biotic
 3.1.1.1. organic
 3.1.1.2. abiotic
 3.1.1.2.1. gaseous
 3.1.1.2.2. liquid
 3.1.1.2.3. solid

3.2. Energy (e)
 3.2.1. gravitational
 3.2.2. thermal
 3.2.3. chemical
 3.2.4. waves

3.3. Information (i)
 3.3.1. scientific
 3.3.1.1. "exact"
 3.3.1.1.1. mathematical
 3.3.1.1.2. physical
 3.3.1.1.3. chemical
 3.3.1.1.4.

continuation: see 2.3.1
ENVIRONMENT (U_A)

<table>
<thead>
<tr>
<th>Environment</th>
<th>checklist F</th>
<th>Cybernetic Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthroposphere</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checklist F

- Normal-Flow (NF)
- Checklist F
- Internal Flow (IF)
- Checklist F
- Out

RE-ACTION (F_A) - Matrix

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklist I_A

Neighbouring (1) Human Interests

<table>
<thead>
<tr>
<th>ecological</th>
<th>social</th>
<th>economical</th>
</tr>
</thead>
<tbody>
<tr>
<td>nature</td>
<td>society</td>
<td>economy</td>
</tr>
<tr>
<td>Intact Environment</td>
<td>Basic Needs</td>
<td>Quality of Life</td>
</tr>
<tr>
<td>content = F_{n,a,i}</td>
<td>minimum to exist</td>
<td>welfare</td>
</tr>
</tbody>
</table>

Use of F_{n,a,i} property, prosperity

<table>
<thead>
<tr>
<th>Self-regulation</th>
<th>Diversity</th>
<th>Precaution</th>
<th>Existence</th>
<th>Safety</th>
<th>Health</th>
<th>Edu.-Edification</th>
<th>Soc. Security</th>
<th>Free Time</th>
<th>Old Age</th>
<th>Liberties</th>
</tr>
</thead>
<tbody>
<tr>
<td>I = local</td>
<td>r = regional</td>
<td>g = global</td>
<td>relative to A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institutions & Associations

<table>
<thead>
<tr>
<th>Institutions, associations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Probability

<table>
<thead>
<tr>
<th>IN-FLOW</th>
<th>PRODUCTION</th>
<th>CON-SUMPTION</th>
<th>OUT-FLOW</th>
<th>PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>supply</td>
<td>incl. service industry</td>
<td>expenditures</td>
<td>disposal</td>
<td>special use</td>
</tr>
</tbody>
</table>

(1) "Neighbouring" Interest = Interest on F within U_k of neighbour (k), whose perimeter of interest (U) is overlapping with U_k, see fig. 2.
CAUSE, ACTION :
MOMENTARY STATE :
SCENARIO :
ITERATION :
PARAMETER λ :

ENVIRONMENT (U_A)

- Atmosphere (Air)
- Hydro-sphere (Water)
- Litho-sphere (Soil)
- Bio-sphere (Organisms)
- Anthropo-sphere (Artificial Systems)

ECONOMICAL
- Nature
- Society
- Economy

Parameter λ according to ECO-KIT:

1. F_{DUE} resp. A_{DUE}
2. F_{TOL} resp. A_{TOL}
3. $G_A = \frac{(F_A - F_{\text{DUE}})}{(F_{\text{TOL}} - F_{\text{DUE}})}$
4. $X_G = X_A \cdot X_I \cdot X_O$
5. $R_A = G_A \cdot X_G$
6. ΔA = measure
7. Cost of ΔA
8. Benefits by ΔA
9. Profit by ΔA

CUBE OF MATRICES for Parameter λ
EXAMPLE

caribbean HURRICANE

ANDREW

August 1992

Devastated MIAMI
SKETCH of PRINCIPLE

F = FLOW
- cybernetic flow \(F_{(m,e,i)} \) = flow of
 - matter \((m)\)
 - energy \((e)\)
 - information \((i)\)
- CONTENT of the world, thus
 - matter \((m)\)
 - energy \((e)\)
 - information \((i)\)
 - of the ENVIRONMENT \((U_A)\)

A = ACTION, CAUSE
- disruptive factor of the world, of its content \(F_{(m,e,i)} \)
 - \(A \) is characterized by
 - i) its envelopment
 - ii) the flow \((F_A) \), normal to the envelopment
- INFLUENCING

F_A = RE-ACTION
- due to \(A \)
- impact due to \(A \) \(= F_{WITH_A} \)
- whereas the change of the world \(B = F_{WITH_A} - F_{WITHOUT_A} \)
- INFLUENCE

I_A = INTEREST
- of \(\Rightarrow \) vulnerability \((E_{I_A}) \) of interest \((I)\) versus \(A \)
 - i.e. versus \(F_A \), determining \(F_{DUE} \) and \(F_{TOL} \)
- INFLUENCED

U_A = ENVIRONMENT
- of \(A \)
- part of the world within conservatively
 - assumed space of influence of \(A \)
- SPACE of ENVIRONMENT of \(A \)

U = ENVIRONMENT
- part of the world within conservatively
 - assumed space of influence of \(A \)
- SPACE of CONFLICT of \(I \) with \(F_A \) and \(A \) resp.

STEP 1 : Determination of SYSTEM
STEP 2 : Partition (Discretization) of TIME => MOMENTARY STATES
Step 3.1: \(F_A = \text{RE-ACTION} \) on 24.08.92, early in the morning at 04.00 a.m.
STEP 3.2: \(F_A = \text{RE-ACTION} \) on 25.08.92; FIRST Iteration

CAUSE, ACTION (A): ANDREW

MOMENTARY STATE: 25.08.92

SCENARIO: worst case

ITERATION: FIRST
CAUSE, ACTION: ANDREW
MOMENTARY STATE: 25.08.92
SCENARIO: worst case
ITERATION: SECOND

ENIRONMENT (UA)

<table>
<thead>
<tr>
<th>Environment</th>
<th>Checklist F (Cybernetic Flow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>Air + addit. contents</td>
</tr>
<tr>
<td>Hydrophere</td>
<td>Water + addit. contents</td>
</tr>
<tr>
<td>Lithosphere</td>
<td>Soil + addit. contents</td>
</tr>
<tr>
<td>Biosphere</td>
<td>ORGANISMS</td>
</tr>
<tr>
<td>Anthroposphere</td>
<td>ARTIFICIAL SYSTEMS</td>
</tr>
</tbody>
</table>

Checklist F (Internal Flow)

- Prob. X
- TR-SPHERE
- OCEAN
- GROUND-WATER
- PLANTS
- HOUSES
- TRUCK-TRAFFIC

Checklist F (Normal Flow)

- Internal Flow: (NF)
- External Flow: (EF)
- Inland Flow: (IF)
- Coastal Flow: (CF)

Characteristics

- Colour
- Texture
- Roughness
- Envelope

- ENVELOPMENT
- CONTENT
- PICTURE

- EXPLOSION
- OIL-PROPACTION

1. less comfort, because not yet fully reconstructed
2. drinking water deterioration, - pollution

STEP 3.3: $F_A = \text{RE-ACTION on 25.08.92}; \text{SECOND Iteration}$
Step 4: Cube of Matrices for parameter \(\lambda \) for 1993

Cause, Action: ANDREW

Momentary State: 1993

Scenario: worst case

Iteration: SECOND

Environment (\(U_A \))

- Atmosphere (Air + addit. contents)
- Hydrosphere (Water + addit. contents)
- Lithosphere (Soil + addit. contents)
- Biosphere (Organisms)
- Anthroposphere (Artificial Systems)

Checklist F (Cybernetic Flow)

Parameter \(\lambda \) according to ECO-KIT:

1. \(F_{DUE} \) resp. \(A_{DUE} \)
2. \(F_{TOL} \) resp. \(A_{TOL} \)
3. \(G_A = (F_A - F_{DUE}) / (F_{TOL} - F_{DUE}) \)
4. \(X_G = X_A \times X_I \times X_O \)
5. \(R_A = G_A \times X_3 \)
6. \(\Delta A = \text{measure} \)
7. \(\text{Cost of } \Delta A \)
8. \(\text{Benefits by } \Delta A \)
9. \(\text{Profit by } \Delta A \)